Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes
نویسنده
چکیده
The stabilizer code is the most general algebraic construction of quantum error-correcting codes proposed so far. A stabilizer code can be constructed from a self-orthogonal subspace of a symplectic space over a finite field. We propose a construction method of such a selforthogonal space using an algebraic curve. By using the proposed method we construct an asymptotically good sequence of binary stabilizer codes. As a byproduct we improve the Ashikhmin-LitsynTsfasman bound of quantum codes. The main results in this paper can be understood without knowledge of quantum mechanics.
منابع مشابه
Several Classes of Concatenated Quantum Codes: Constructions and Bounds
In this paper we present several classes of asymptotically good concatenated quantum codes and derive lower bounds on the minimum distance and rate of the codes. We compare these bounds with the best-known bound of Ashikhmin–Litsyn–Tsfasman and Matsumoto. We also give a polynomial-time decoding algorithm for the codes that can decode up to one fourth of the lower bound on the minimum distance o...
متن کاملAsymptotically Good Quantum Codes
Using algebraic geometry codes we give a polynomial construction of quantum codes with asymptotically non-zero rate and relative distance.
متن کاملAsymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound
Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 2055 REFERENCES [1] G. F. M. Beenker, " A note on extended quadratic r...
متن کاملQuantum Stabilizer Codes from Toric Varieties
A.R. Calderbank [1], P.W. Shor [2] and A.M. Steane [3] produced quantum stabilizer codes from linear codes containing their dual codes. A. Ashikhmin, S. Litsyn and M.A. Tsfasman in [4] used the construction to obtain asymptotically good quantum codes fra codes on algebraic curves. In [5] the author developed methods to construct linear error correcting codes from toric varieties and derived the...
متن کاملUpper Bounds on the Size of Quantum Codes
This paper is concerned with bounds for quantum error-correcting codes. Using the quantum MacWilliams identities, we generalize the linear programming approach from classical coding theory to the quantum case. Using this approach, we obtain Singleton-type, Hamming-type, and the first linearprogramming-type bounds for quantum codes. Using the special structure of linear quantum codes, we derive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 48 شماره
صفحات -
تاریخ انتشار 2002